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Abstract—The increasing use of autonomous underwater vehi-
cles (AUVs) for environmental monitoring, underwater research,
and search and rescue operations highlights the importance of
efficient path planning for AUVs in unknown areas. In this
paper, we propose a path planning and simulation strategy for
AUVs. Our approach involves path planning algorithms and the
OMNeT++ network simulator to simulate the motion of AUVs.
The algorithms are applied to mission planning for a single AUV
as well as for multiple AUVs in specific scenarios. The results
demonstrate the potential of the approach to solve real-world
problems and provide insightful information about the behavior
of AUVs in different situations.

Index Terms—AUVs, path planning, simulation.

I. INTRODUCTION

Most of the earth is covered by bodies of water, and
much of that water has yet to be discovered. The reason
for the shift in focus from land to water is not only in the
energy sector, but also has a major impact on it. The oceans
hold an immense amount of renewable energy in the form
of wind energy, tidal energy and wave energy. To harness
this vast amount of hidden energy, the ocean must first be
surveyed. The emerging technology of autonomous underwater
vehicles (AUVs) may be perfect for the goal of surveying
the ocean. AUVs are robots capable of moving underwater
without human assistance to perform tasks. Depending on their
purpose, AUVs are equipped with a variety of sensors and
actuators to assist them in their mission [1].

In recent years, many different fields have shown interest
in AUV research. This paper also contributes to this interest
and attempts to solve the task of path planning for AUVs
and simulate their movement while following it. The field
of simulation has expanded significantly due to technological
development and increasing computing capacity. The capabil-
ities of simulation have made it possible to test unexpected
situations and events. The spectrum ranges from transportation
and aerodynamics to more sophisticated disciplines such as
biology. The need for a simulation environment for mission
planning for AUVs is imminent. Many researchers have been
working on this issue and several projects have been de-
veloped [2]. Since OMNeT++ (Objective Modular Network
Testbed in C++) can be used to simulate movement and is well
suited for lather testing of different communication methods,
it was chosen as simulation environment [3].

The main contribution of this paper is to plan the path
of a single AUV as well as paths for multiple AUVs for a
specific type of mission with suitable algorithms as well as to
explore the possibilities of setting up a simulation platform in
OMNeT++. The path-planning for single or multiple AUVs is
at least as important as simulating the motion, since no sim-
ulation would be possible without a predetermined path. The
motion of AUVs is simulated using the BonnMotionMobility
model in the OMNeT++ framework INET [4]. The BonnMo-
tionMobility model in INET is trace-based. Trace-based means
the trajectories of the nodes are taken from generated trace
files, which include triple consisting of time as well as x-
coordinate and y-coordinate of the AUV at the given time.
The speed of the AUV is therefore implicitly defined by the
distance between two consecutive coordinates and the elapsed
time between being at these coordinates.

II. PATH PLANNING ALGORITHMS

This section aims to explain the algorithms used for path
planning and is divided into two parts: path planning for
a single AUV and path planning for multiple AUVs. A
basic maneuver every underwater vehicle needs to perform
is to go from one point to another. The complexity in path
planning increases after the introduction of an obstacle. This
increase in complexity is due to the decision of the path
to be chosen to reach the goal while avoiding the obstacle.
To find the optimum path in a complex environment, path
planning algorithms are used. Motion planning (also called
path planning) is the computational problem of finding a set
of valid configurations that move an object from a source to
a destination. The term is used in computational geometry,
computer animation, robotics, and computer games [5].

A. Path Planning for a Single AUV

Path planning for a single AUV means planning a path for
one AUV to take from start to finish using the best path. This
paper mainly focuses on offline path-planning algorithms using
search-based algorithms. Search-based planning is a motion
planning method that uses graph search methods to compute
paths or trajectories through a discrete representation of the
problem. Many novel algorithms have been developed and
tested, and a few of them have proven to yield excellent results.
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To select an algorithm for path planning, an evaluation
was performed. The evaluation was done by using a project
that uses algorithms in the same test environment with the
same obstacle setup, resulting in different paths and hence
a better understanding of the behavior of algorithms. These
tests aimed to find an algorithm that can fulfill the purpose of
path planning while considering a cost function. Since more
than only one algorithm was able to plan a path at the given
environment, it was necessary to perform a more advanced
comparison between the different algorithms. To do so the
tested algorithms were compared using different performance
metrics like described in [6]. The following metrics were used:

1) Computational Time: It represents the time an algorithm
takes to compute a path.

2) Success Rate: The probability an algorithm finds a suit-
able path for different scenarios.

3) Distance to Goal: The distance between the node’s last
position and the target location in the event of failure.

4) Path Length: The total length of the calculated path to
reach the destination.

5) Deviation: The difference between the calculated path and
the shortest path calculated by any tested algorithm for
the same environment.

With these metrics it is possible to deduce that the algorithm of
choice is Dstar. Besides other algorithms like Bidirectional As-
tar, Astar, Anytime Dstar, Dijkstra, Best-First Search, Lifelong
Planning Astar, Dstar Lite, Real-Time Adaptive Astar, Breath-
First Search, Anytime Repairing Astar, Learning Real-Time
Astar and Depth-First Search, the Dstar algorithm has reached
the best overall ranking. The algorithms were ranked with a
low-point system, where the ranking positions of all metrics
were added up and the algorithm with the lowest overall sum
is chosen as most suitable.

Dstar stands for ”Dynamic Astar.” It is similar to the
popular path-finding algorithm Astar, which used to find the
shortest path between two nodes in a graph [7]. Astar uses
a heuristic function to calculate the cost of reaching the
destination from a certain node to determine the most suitable
successor of the current node. The Dstar algorithm adds the
ability to reconfigure parameters. This makes it more viable for
environments with little changes, e. g. adding one obstacle to
the whole environment. This is useful in case the environment
for the path-planning is at a fixed spot, but there is not all
information about all obstacles known. Nevertheless, it must
be made clear that although the algorithm is called ”dynamic”,
it is an algorithm for offline planning and should not be
confused with being a dynamic online planning algorithm.
Dstar follows a similar set of data structures as Astar, with
an additional list to be maintained [8].

B. Path Planning for Multiple AUVs

Larger missions often involve the use of multiple agents to
complete the mission. For instance, to scan a larger area of
an ocean, a single AUV going back and forth would often
require a lot of time and would not be an ideal solution.
Instead, if multiple AUVs can work in synchronization, the
task can be finished in less time with better energy savings for

an individual AUV. Planning for multiple AUVs is an extended
version of path planning. The goal is similar as single AUV,
i.e., to travel from start to goal point. Unfortunately, it is not
possible to use the Dstar algorithm for planning the path of
multiple AUVs, because it would only consider the starting
position of the other AUVs as obstacle, which might lead to
collisions. The Astar instead reconsiders the new positions
of the AUVs during the path planning to avoid collisions.
The Multi Agent Path Finding (MAPF) problem is frequently
treated as a hybrid of single agent path finding. This often
involves traversing the same map through different starting
nodes. To take it a step further, the coordination of agents is
needed. To incorporate this coordination, a regression-based
method is used to check for all possible paths that would result
in no collision or conflict. The multiple AUV planning was
done using a conflict-based path finding method as explained
in the following [9]. Conflict-based search (CBS) is a new
optimal path-finding algorithm for solving MAPF problems.
CBS is a two-level algorithm. This two-level procedure elim-
inates the necessity of using the Astar algorithm for planning
the paths of multiple AUVs because the paths can again be
planned for every AUV by its own using Dstar, since the
collisions are handled explicitly at the highest level. At the
highest level, a conflict search is conducted by means of a
Constraint Tree (CT) which is a tree based on individual agent
conflicts. A constraint therefore describes a specific time when
an agent is not allowed to be at a certain place. Each node in
the CT represents a set of restrictions on the agents’ motion.
To satisfy the constraints imposed by the high-level CT node,
quick single agent searches are conducted at the low level, for
which we use the Dstar algorithm. CBS’s approach is to create
a set of constraints and then find paths that are consistent with
those constraints. If these paths intersect, they are considered
invalid and would necessitate the addition of new constraints.

This multi-agent CBS starts with detecting possible conflicts
between agents using a high-level search algorithm. It is done
by analyzing the start and destination positions of each agent
and determining the points in time when more than one agent
is at the same place. This state would lead to a collision and
therefore it leads to a conflict. Each of these conflicts are
combined into a conflict set for the low-level algorithm as
an input. Since the low-level path-planning algorithms know
which places to avoid at which time, a new path can be planned
for every agent until all constrained satisfied.

III. IMPLEMENTATION AND EVALUATION

This section first introduces our architecture implemented
in such a way as to compute feasible paths for the AUVs
and simulate them. Subsequently, we evaluate our solution by
means of case studies.

A. Implemented Architecture

The overall goal of the algorithm discussed so far is to
devise an executable path adhering to all mission requirements.
In order to convert the input parameters map and target data
to the final path, an architecture shown in Fig. 1 has been
implemented that is divided into 5 stages to be executed in
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Figure 1. Representation of the architecture.

sequence and also to be repeated when the desired result is
not yet achieved. The five stages of the architecture comprise
mission planning, mission execution, validation, simulation,
and results, which will be detailed in the final paper.

1) Mission Planning: This stage focuses on defining the
main motive of the mission. The location of the mission
and the exact goals are decided at this stage. The nature of
the mission is also of prime importance, i.e., single AUV
or multiple AUV. In this step an image processor converts
the selected map as well as the goals into obstacle data and
goal data which can be used as input for the path planner.
A screenshot from Google Maps showing Warnemünde like
depicted in Fig. 2 will be converted to a picture like shown in
Fig. 3. The converted map consists of only black and white.
The white area represents water and the black area represents
the land and therefore a big obstacle. The image processing
has to go through different steps like converting to 2-color
image, removing water areas which are not irrelevant like the
little streams in the south-west of Fig. 2. All image processing
is implemented using Python and the map and goals are input
as jpeg image files. As an output the image processor creates
two txt-files for obstacle and goal data.

2) Mission Execution: This is the main part of the archi-
tecture as it calculates the path for the next steps. The AUV
planner comprises the algorithm based on the obstacle and
goal data from mission planning and outputs a basic path for
further steps. To calculate the path, the described procedure
from Sec. II is used to find the most suitable plan. This stage
of our architecture generates only one txt-file, which contains
the planned path. Fig. 4 shows the image of Warnemünde
with the blue starting-point and the green finishing-point. The
blue path that connects these two points was planned by the

mission execution stage and shows an optimal path between
these points that was calculated by the Dstar algorithm.

3) Validation: The validation step determines whether a
solution for the path has been found and the accuracy of
the solution. When goals for an optimal path are not met,
the output path needs to be checked for accuracy or even
recalculated. The validation is split into numerical and visual
validation.

The numerical validation checks key data like if the starting
point of the planned path is the same as the starting point
of the goal data. The same is done for the finishing point.
On the other hand, it is checked if the length deviation from
the optimal path is within a certain maximum or whether the
previous stage must be repeated.

The visual validation checks if there are any points of the
path that collide with an obstacle or with other AUVs. If
the validation is successful, a file which describes the path
as Bonnmotion trace as well as an obstacle environment are
generated to simulate the generated path in OMNeT++.

4) Simulation: The simulation stage is intended to simulate
the calculated path with the BonnMotionMobility model while
also utilizing the OMNeT++ simulator’s additional functional-
ities. The OMNeT++ simulator can calculate external param-
eters such as congestions for traffic simulations or conflicts
during multi-agent simulations.

The simulation is done in OMNeT++ because it enables the
lather addition of communication between multiple AUVs to
make them cooperate with each other. Since communication
is essential for sophisticated cooperation between more than
one AUV, it is reasonable to use OMNeT++ to simulate
the movement of those, because OMNeT++ is an discrete
event simulator which is primarily meant for building network
simulators [10].

5) Results: If all the above-mentioned steps show a satis-
factory result, a path is ready for test of a real AUV.

B. Case Studies
Following there will be one case study with a single and

one with multiple AUVs. It highly depends on the mission
and itself if it is worth to use more than one AUV. A mission
with a job like moving from a starting to a finishing point with
investigating the seafloor might be a job for only one AUV.
A possible mission that could use multiple AUVs comprises
underwater exploration or mapping. The AUVs could be
deployed in a coordinated manner to cover a large area of
the ocean floor, gathering data on the seafloor topography,
geology, and marine biodiversity.

1) Single AUV: The first case study aimed to test the most
basic target of an AUV, i.e., to travel from one point to
another. The AUV is instructed to travel from a start point to
an exact location while trying to avoid obstacles encountered
during the journey. It is an offline planning process with
information on all the obstacles available during planning.
The plan only considers static obstacles and does not consider
dynamic obstacles. For this mission, a test location is selected
at Warnemünde. The location is the meeting point of the
Warnow River and the Baltic Sea. This location can be found
at the coordinates 54.18348, 12.09044.
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Figure 2. Screenshot of Warnemünde from Google Maps.

The mission attempts to navigate the AUV from the Warnow
River channel’s interior (coordinates 54.1742, 12.09651) to a
point in the open sea (coordinates 54.18322, 12.07709).This
would imitate the situation of a mission that required the
AUV to navigate through tight corners as well as irregular
boundaries.

The physical environment for this mission has features like
a port and a river channel, as well as a wide open ocean.
Fig. 2 shows the map view of the mission location. The start
position is at 54.1742, 12.09651, and the target location is at
co-ordinates 54.18322, 12.07709, which corresponds to X and
Y locations of 200, 175 and 50,107, respectively.

The image processor converts Fig. 2 into Fig. 3 with
removing canals, guidelines and streets into a two-tone black-
and-white image. This image-information is needed by the
path planner to set every black pixel as an obstacle.

Since the mission only requires a single AUV the Dstar
algorithm from Sec. II can be used to calculate the shortest
possible path from the starting-point to the destination without
colliding with any obstacle. Fig. 4 shows the generated path
directly inside the black-and-white obstacle image. It gets
clear, that the Dstar algorithm has found the only way of
leaving the Warnow to reach the finishing point. Also it is
the shortest path possible.

The Validation of the planned path is also done and it is
considered as numerically correct, because the first element
of the path consists of the same coordinates as the starting-
point, as well as the last coordinate of the path is the same
as the finishing-point. This shows that the AUV starts at the
correct position and finishes at the required target location.
The visual validation was also successful, since there were no

Figure 3. Screenshot of Warnemünde with land in black and water in white.

Figure 4. Path at Warnemünde planned by Dstar from blue starting-point to
green finishing-point.
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Figure 5. Planned path simulated in OMNeT++.

coordinates from the path of the AUV which are on land and
would lead to a collision.

After successful completion of all the above steps, the
mission is ready to be simulated in OMNeT++. The simulation
involves the usage of OMNeT++ as the simulation framework,
the Bonnmotion Mobility Model for the movement, and Qtenv
for the visualization of the simulation. The output path from
the validation is already in the right format for OMNeT++
to serve as a Bonnmotion trace file. On the other hand the
environment has to be used by OMNeT++, since, without it,
it would not be possible to determine if the simulation with
OMNeT++ generated the desired output.

Fig. 5 shows the 2D-visualization of OMNeT++ with the
given path and environment. It shows the AUV right after
reaching the destination at the Baltic Sea. This case study
makes it apparent that the developed architecture works for
single AUV missions.

2) Multiple AUVs: The first mission involves deploying
multiple AUVs in a simulated scenario to test collision avoid-
ance algorithms. The AUVs are programmed to travel to
different targets that have been set up in such a way as to cause
them to cross each other’s paths, creating situations where the
collision avoidance algorithms can be evaluated. This kind of
mission is good for testing and improving the performance of
AUVs when they have to work close to other vehicles.

The second mission involves using four AUVs to conduct
a site survey of individual wind turbines at the Barrow Wind
Farm located in the East Irish Sea. The purpose of this mission
is to showcase the potential of AUVs in analyzing the structure

Figure 6. The Scottish Barrow Wind Farm with positions of turbines and
cabling.

of wind turbines for tasks such as maintenance and damage
inspection, which are traditionally carried out manually using
diving equipment. By using AUVs, the mission aims to auto-
mate the task of surveying wind turbines, which would reduce
effort and increase efficiency. This mission demonstrates the
ability to plan and execute a complex operation involving
multiple AUVs.

Fig. 6 shows an extract from a seamap which includes the
position of every single wind turbine. Unfortunately the image
processor is not able to generate the black-and-white image
exclusively by itself. It is necessary to draw a picture that
makes it more clear where wind turbines are and where there
is water.

The goal definition consists of a single starting-point, which
is located at the point of Fig. 6 that is called substation 01,
because this is assumed as a safe spot to bring the AUVs into
water. Since the finishing-point for every single AUV is not
known before the processing, all 30 wind turbines are defined
as potential end-points of the paths.

To execute this mission the CBS method is used as it
involves multiple AUVs. Since the AUVs need to cover
multiple waypoints the planning for of this mission is fairly
complex. To calculate the next step of AUV after surveying a
wind turbine needs to be decided by offline planning in order
to account for any casualties. The sequence of execution for
each AUV calculated by the path planner, came to the clue,
that it is the best case if every AUV surveys one line (A to D
in Fig. 6)of wind turbines. Also, there are set four waypoints
around each wind turbine because of the purpose of surveying
these. To check the whole wind turbine it is necessary to
inspect it from every side.

The validation of this mission is highly crucial due to the
multiple waypoints for each AUV being targeted. The proce-
dure for numerical validation is similar to previous missions
but has to be done multiple times. The mission has 30 wind
turbines and 4 waypoints around each wind turbine, resulting
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Figure 7. The simulated inspection of the turbines at the wind farm.

in a total of 120 sets of start and goal locations that need to
be numerically validated.

Fig. 7 shows the simulated case study. It shows the AUVs
right after finishing the inspection of the last wind turbine.
From the past course can be seen which sequence every AUV
processed to reach its destination point.

IV. CONCLUSION

The main goal of this paper is to investigate the viability
of planning paths for AUVs and testing these in a simulation
platform utilizing OMNeT++ motion models.

It has been shown, that path planning for a single AUV and
path planning for multiple AUVs are the two scenarios for the
route planning that need different approaches. Planning the
paths for a single AUV the Dstar search algorithm delivers
suitable paths with reasonable time effort. Whereas, planning
the paths for simultaneous moving AUVs is more complex.
Since, two or more AUVs cannot be in the same place at

the same time, it is necessary to use a conflict-based search
algorithm. Such an algorithm does also find a usable solution
for the shown case studies. It can be used to locate the best
course through a complicated environment. The simulation of
the planned paths shows the usability of the whole architecture
with its different stages.

Future research may examine the use of different path
planning algorithms in more complicated situations. And the
simulation in OMNeT++ might be used to add a beneficial
communication for cooperative missions with multiple AUVs.
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